

©2015 O’Reilly Media, Inc. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. #15306

“	Velocity is the most 		
	valuable conference I have
	ever brought my team to. 	
	For every person I took 			
	 this year, I now have three 		
	who want to go next year.”
			 — Chris King, VP Operations, SpringCM

Join business technology leaders,
engineers, product managers,
system administrators, and developers
at the O’Reilly Velocity Conference.
You’ll learn from the experts—and
each other—about the strategies,
tools, and technologies that are
building and supporting successful,
real-time businesses.

Santa Clara, CA
May 27–29, 2015

http://oreil.ly/SC15

http://oreil.ly/SC15

Terrence Dorsey

Web Page Size, Speed, and
Performance

Web Page Size, Speed, and Performance
by Terrence Dorsey

Copyright © 2014 O’Reilly Media, Inc.. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://my.safaribooksonline.com). For
more information, contact our corporate/institutional sales department: 800-998-9938
or corporate@oreilly.com.

Editors: Mike Loukides and Brian
Anderson
Production Editor: Nicole Shelby

Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

June 2014: First Edition

Revision History for the First Edition:

2014-06-03: First release

2015-03-24: Second release

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. Web Page Size, Speed, and Performance and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their prod‐
ucts are claimed as trademarks. Where those designations appear in this book, and
O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed
in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
and author assume no responsibility for errors or omissions, or for damages resulting
from the use of the information contained herein.

ISBN: 978-1-491-95022-7

[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Introduction. 1
Make the Web Faster 1
The Simple Path to Performance 2

Big Web Pages are a Bigger Problem Than You Think. 3
Web Performance Means Business 5

Charting Web Performance Against Business Success 6
Leave Room for Social Experiences 6

Bigger Pages Clog Up the Pipes 6
Net Neutrality Affects You, Too 7

What Makes Web Pages Fat?. 9
Weighed Down By User “Experience”? 9
Are Development Tools Part of the Problem? 10

The Solution Starts with Understanding the Problem. 11
Hero Images and Scaling for Retina 11
Sizing Images Effectively 12
Plug-Ins and Widgets 12
Ads and Video Have a Cost 13
Slowed Down By Code Behind the Scenes 13
Weighing the Useful Against the Wasteful 14

Cut and Paste Development. 15
The Easy Route Makes Solving Problems Difficult 15
Shiny New Things Clutter the Solution 16

iii

Simplify, Then Add Lightness. 17
Optimizing Your Optimization 18
Looking for Performance In All the Right Places 18
A Real-World Example: SpeedCurve 19
DIY Performance Testing 20

Site Optimization From the Top Down. 23
Simplify Your HTML 23
Put Your CSS and JavaScript on a Diet 24
A Little Order Keeps Requests from Blocking 25
Loading JavaScript Asynchronously 25
More Tips for Optimizing CSS and Script Resources 26

Is an Image Worth 1,000 Bytes?. 27
Efficient Image Formats Save Space 27
An Old Trick That Still Works: CSS Sprites 28

Mobile Doesn’t Mean Speedy. 29
Mobile is Always a Slower Experience 29
Be Careful How You Optimize for Mobile 30

Next Steps. 31

iv | Table of Contents

Introduction

The performance of your website is as valuable as ever, and grows in
importance every year as ecommerce takes a bigger bite of the sales
pie, mobile online use continues to grow, and the web in general be‐
comes ever more entangled in our lives. There’s one significant prob‐
lem: websites seem to be getting slower every year, not faster.

There are many reasons why websites are slow. Servers are an impor‐
tant aspect of web performance, and in some respects that’s a solved
problem, but there are still many high-profile sites that demonstrate
poor performance even with sophisticated hardware. If you’re serious
about it at all, you’re not going to be running a site on shared hosting
and expecting to handle significant traffic surges without a problem.
Building out a site with load balancing, dedicated database resources,
and so on is simple enough. It’s really a matter of a little expertise, some
planning, and a budget. But adding server resources before fixing
more basic performance issues brings its own problems.

Web pages themselves present a different issue: they keep getting big‐
ger and more complicated. Radware and Strangeloop have been meas‐
uring web page size and performance for the Alexa top 2,000 retail
websites going back to 2010. Their most recent report noted that, in
2014, web pages among the sites examined are bigger than they’ve ever
been. The average web page for the top 500 Alexa sites was a whopping
1.4MB. Yes, megabytes!

Make the Web Faster
Moore’s Law takes care of this, right? Faster processors, bigger pipes,
better software. Applications used to come on a single 1.44MB floppy.

1

Now they require a DVD (or more likely a several-gigabyte download),
but they run just as fast while providing more features. This means big
web pages shouldn’t be a problem, right? Just throw more technology
at your site—faster servers, more RAM, caching and load balancing
services, a NoSQL database—and the problem should be solved.

Unfortunately, it’s more complicated than that. Your backend hard‐
ware and software are only one facet of the performance problem.
There’s certainly an opportunity to performance-tune the backend of
your site either by optimizing its configuration or simply adding more
horsepower. However, along this path you’re likely to encounter the
need for much deeper technical knowledge along with added costs and
complexity.

There’s another path that I think you should explore first. Plus-size
web pages are a problem all on their own. A large web page takes up
a great deal more bandwidth in transit and many more round trips for
everything to arrive on the computers of your visitors. The more vis‐
itors, the more bits flying around. Your first task should be a simple
one: examine whether the size and complexity of your web pages
themselves are creating a performance bottleneck.

The Simple Path to Performance
Making your web experience quicker and more enjoyable for visitors
may not require a large investment in new development languages and
frameworks or state-of-the-art hardware. It may be as simple as mak‐
ing sure the basic HTML, CSS, and JavaScript components of your site
—the foundational frontend building blocks of the Web for nearly 20
years—have been optimized. This is all well-known technology and
shouldn’t be a problem, but evidence shows us it is a problem… and
it’s getting worse from year to year.

In this article I’ll explain why web pages have become so large, and I’ll
take a look at why that’s a problem for visitors to your website — and
possibly a problem for your business. Then I’ll show you a few simple
but often overlooked frontend development techniques to help whip
your web pages into shape, slimming them down and resulting in the
best performance possible.

2 | Introduction

Big Web Pages are a Bigger
Problem Than You Think

Previously, I mentioned the Radware/Strangeloop reports on web page
size and performance for the Alexa top 2,000 retail websites. The un‐
bridled growth of websites revealed by these reports is pretty shocking
and it has some unfortunate side effects in terms of web performance.
Let’s take a closer look.

Thanks to rapid development in web servers, browsers and the tech‐
nology sphere in general, some of the measurements are difficult to
correlate over the entire span of these reports. Looking at comparable
statistics, however, we can see that average page size grew from around
780KB and 86 resources in 2011 to 1,100KB in 2012 and over 1,400KB
and 99 resources by the time of the early 2014 State of the Union Winter
Report (see Figure 2-1).

To dig a bit deeper into the component specifics of this website growth
trend, I headed over to the HTTP Archive. Using the “trends” tool, I
chose to display data for the top 1,000 sites from May 2011 to early
2014. This report illustrates the growth in total page transfer size and
number of requests over that period, then breaks the stats down by
component, including HTML, JavaScript, CSS, images, and more.

I’ll just show the total and HTML trends here, but you can clearly see
that average page size for these sites starts just under 700KB in 2011
and rockets up to over 1,400KB by early 2014. Every category except
Flash transfers shows similar growth over this period, and Flash re‐
mains roughly level in transfer size while declining in popularity (see
Figure 2-2).

3

http://bit.ly/rad-strange
http://www.httparchive.org

Figure 2-1. Growth of average page size and resource requests since
2011

Figure 2-2. Trend data from the HTTP Archive

4 | Big Web Pages are a Bigger Problem Than You Think

Looking for some additional comparable data, I went to the Internet
Archive and pulled up versions of Amazon’s home page from the April
archives of each year starting in 2011. Using the Network tab of the
Chrome developer tools, I measured the traffic created by loading each
version of the site.

The archived 2011 site loaded 456KB in 81 requests; the 2012 site
loaded 467KB in 68 requests; the 2013 site loaded 658KB in 126 re‐
quests; and the archived 2014 site loaded 777KB in 134 requests. That’s
a 70 percent increase in page size and a 65 percent increase in the
number of requests needed to load the page. It’s not a perfect test, but
the results provide an interesting time-lapse comparison nonetheless.

For further comparison, I also loaded the current Amazon site: 2.6MB
loaded with 252 requests!

Web Performance Means Business
Why is the performance of your website important? Why should you
care about how big your web pages are becoming?

Here’s one example: US ecommerce at the end of 2013 accounted for
around 6 percent of all retail sales. Online retail spending is growing
at an annualized rate of between 14 and 17 percent in the US, and the
mobile portion of those sales has been increasing in double digits year
over year as well. Outside the US, online sales are increasing even faster
in areas like the UK, South Korea, and China.

The problem is performance. The rendering time for a site and the
time to interaction (the point at which users can actually do something
on your page) have a direct impact on customer experience. A good
experience is the difference between converting a visit into a purchase
(or some other desirable outcome) and having the visitor close the tab
before your page has even rendered.

It’s not just about ecommerce—the same rules apply to the frontend
user experience (UX) of any website, regardless of whether you offer
news, marketing, customer support, entertainment, personal blogs, or
any other kind of content. But the same rules apply: if you want people
to visit your site and stay long enough to have the first page render,
that first UX impression is vitally important. Whether the site is a
Fortune 500 retailer or Uncle Joe’s fishing stories, the numbers tell us
that people don’t visit if the frontend experience is slow.

Big Web Pages are a Bigger Problem Than You Think | 5

http://www.archive.org
http://www.archive.org

Charting Web Performance Against Business Success
Let’s get back to those web performance survey results for a minute.
Tammy Everts, discussing them at Web Performance Today, noted that
the average rendering time for surveyed sites was over 5 seconds, one
quarter of the pages reviewed took over 8 seconds and “5 seconds is
still a far cry short of 3 seconds—the point at which the majority of
shoppers say they’ll abandon a page.”

In another blog post, Everts notes that “A 2 second delay in load time
during a transaction results in abandonment rates of up to 87 percent,”
a 24 percent increase over typical abandonment rates.

Leave Room for Social Experiences
According to Jainrain, the social media consulting company, almost
60 percent of shoppers do research online before buying, and half of
the consumers who do that research then post comments or reviews
about their purchases. As the report states, “71 percent of shoppers
rely on customer reviews to influence purchase behavior.” Plus, shop‐
pers who log into an ecommerce site are more valuable, since they
make purchases more often and are “nearly twice as likely [to] pur‐
chase on a site that automatically recognizes them.”

That just scratches the surface of online behavior shaped by both per‐
formance and site features. You’ll want to balance a svelte site that’s
quick to render and become interactive with more complicated fea‐
tures like comments, ratings, sharing and membership, or whatever
else drives interaction between your business and its customers.

Whether you’re selling online or promoting your latest open source
project, the same rules apply. If you’re not available to your audience,
then you’re needlessly turning them away.

Bigger Pages Clog Up the Pipes
The problems with heavyweight web pages start with the fact that, as
you’re browsing the Internet, it takes more packets to get large pages
from the server to your computer. In some particularly wired countries
or regions such as Hong Kong, South Korea, and Switzerland, there’s
plenty of bandwidth. And compared with streaming video from Am‐
azon, Apple or Netflix, you’re still talking relatively small amounts of
data—you need at least 2Mb/s for sustained streaming video—even in

6 | Big Web Pages are a Bigger Problem Than You Think

http://bit.ly/everts1
http://bit.ly/55webstats
http://bit.ly/7-social-comm

in the United States where average home broadband bandwidth ranks
only 33rd according to recent statistics from netindex.com.

But we are starting to see potential problems on the horizon. Not to
pick on Comcast, but if their proposed merger with Time Warner’s
broadband operations is approved, the combined company will serve
about 30 percent of US cable internet subscribers. Official statements
about this merger touted “its ability to deliver groundbreaking prod‐
ucts” along with “operating efficiencies and economies of scale,” but
no mention is made of investment in Internet infrastructure, improved
quality, or faster service offerings.

Net Neutrality Affects You, Too
There are other industry issues that can affect the speed at which your
web page traverses the network to customer browsers. The last-mile
providers—Comcast and Verizon in particular—have a less-than-
friendly relationship with internet backbone companies like Level 3
and Cogent. Contractual arguments over peering agreements have led
to accusations of service interruptions and slowdowns, as well as com‐
plaints about a lack of investment in delivery infrastructure, leading
to overburdened switches during high-use times of day.

More recently, we’ve seen Netflix and Apple strike payment agree‐
ments with Comcast to ensure network access levels, and comments
from the FCC suggest deals like this might become policy, not anom‐
aly. Clearly these companies anticipate a future where bandwidth
could be a scarce resource, but they are profitable enough to pay for
it for access (for the moment). If your web page needs more band‐
width, are you ready to pay up? And can you afford to compete with
Apple for that bandwidth? It’s becoming less of a conspiracy theory
and more a reality of doing business every day. It also makes investing
in development skills and practices to keep your own use of the Web
light and efficient look potentially cheap in comparison.

Big Web Pages are a Bigger Problem Than You Think | 7

What Makes Web Pages Fat?

Web pages don’t add bytes all on their own—there must be something
about development tools, programming techniques, and business
practices that is making websites bigger, more complicated, and often
slower.

The most obvious reason to make pages bigger? Because we can.
Compared to the early days of the Web, server and client hardware
performance is orders of magnitude greater. Bandwidth available to
most users is far greater as well (on the desktop, at least). Even com‐
pared to the heady dot-com boom days over a decade ago, we’ve pro‐
gressed far enough in web application programming tools and tech‐
niques that the focus is increasingly on polish and “experience.”

We’re also able to focus those tools and techniques on building pol‐
ished experiences around specific business requirements. Done right,
signing up for a service online, making a purchase, or chatting with
friends (in a manner that gives advertisers a laser focus on your dem‐
ographic) has never been easier or more enjoyable.

Weighed Down By User “Experience”?
Note, however, that I use scare quotes around experience. As I pointed
out earlier, the experience of your website has a bottom-line impact
on your business. Specifically, your business is affected by how quickly
it renders and becomes interactive, as well as by the kinds of features
you’ve chosen to implement.

Security is, of course, a concern—losing user data to hackers tends to
turn consumers off—but registering and remembering returning
users is a feature customers value. Again, ratings and reviews have a

9

positive impact on sales, as do social referrals, one-click ordering, and
online customer service. Just thinking about the business concerns on
a typical ecommerce site, you can start to imagine the code piling up.

It may seem like my focus here is on ecommerce. If the focus of your
site is something other than selling things, you might think these con‐
cerns are irrelevant. But think about it this way: whatever the purpose
of your site, your concerns are, at some level, similar to those of ecom‐
merce. You want people to visit your site, read what you have created,
click links and share with their friends and colleagues. None of that
happens when the site experience is slow and unresponsive.

Are Development Tools Part of the Problem?
An obvious question to ask is whether modern web development tools
contribute to code bloat and performance bottlenecks. There are some
seemingly obvious suspects in this crime.

At its heart, a web page just needs HTML and content. Let’s assume
you’re keeping faith with the semantic markup concept, so your
HTML markup represents just the objects in your content. You’ll in‐
clude a layer of CSS to specify the rendering details of your markup,
with a little JavaScript sprinkled in to add client-side computation of
dynamic content, AJAX interaction with the server, and more.

Generally speaking, this is a pretty simple game so far. It’s text all the
way down. But, as we’ll see later, it is possible to drag down the per‐
formance of your site with just these seemingly straightforward in‐
gredients.

I don’t think the tools themselves are the problem. The building blocks
aren’t a problem either if we use them wisely. The problem lies, I think,
in using the tools available to you unwisely, without understanding
(or having forgotten) some of the lessons of the far slower, baud-
limited past.

Let’s take a look at a few of the basic elements and how they are used
—and sometimes abused!

10 | What Makes Web Pages Fat?

The Solution Starts with
Understanding the Problem

As I noted earlier, the size and number of images used in web pages
continues to increase, and there are a number of reasons for this trend.
On the client side, a trend toward larger desktop computer screens
means more real estate to fill—often with images. Once upon a time,
a 600 pixel-wide page was considered lavish. Today, 1920×1200 pixels
is a run-of-the-mill desktop, and high-density displays are pushing
even greater pixel counts. All of this screen real estate tempts designers,
long cramped by those small target screens, to fill the expanding
canvas.

Hero Images and Scaling for Retina
The full-page-width “hero” image is one idea that’s currently in vogue.
Another that is getting tired, but won’t go away thanks to readily avail‐
able design templates, is the slide show. Three, four or even more high-
quality stock images whisked across the internet and sliding across the
screen every few seconds… and ignored while your customer searches
for link to actual content.

High-density displays, led by Apple’s Retina devices, probably aren’t
helping matters. Compared to traditional computer display pixel den‐
sities between 72 and 130 pixels per inch (PPI), high-res displays now
use pixel densities of 220 PPI or more. (The current iPhone 5s and
iPad Mini are 336 PPI. Some devices offer even higher resolutions.)
This makes individual pixels mostly undetectable to the majority of
users at standard viewing distances. The high-density displays look

11

great on phones and tablets. Now they’re on MacBooks, too, and
probably coming to desktop monitors before you know it.

Web designers who are clued in to the issues around Retina want to
make sure their sites look great on these displays. You can still use
standard resolution images—by default, browsers will scale up images
to display correctly on the screen. The problem is that upscaled images
may look blocky and of poor quality.

Changing images to look good on high-density screens requires dou‐
ble pixel density images. These kinds of images do require some
thinking ahead to create, but it’s not rocket science.

Sizing Images Effectively
One technique involves creating images scaled to various supported
pixel densities. For example, you might start with a 2× image at full
resolution and downscale versions to 1.5× and 1× scales. (Start with
the largest image and work down to smaller ones for best quality.) If
the original image was, say, 200×200 pixels, you’d create additional
versions at 150×150 and 100×100 pixels. Then you can employ user
agent media queries and CSS for on-the-fly higher resolution image
substitution when the display PPI supports it.

However, that’s a lot of overhead for the designer and whomever keeps
track of the code. Another technique is to simply use the 2× image
everywhere and rely on the browser’s down-scaling capabilities, which
are universally very good these days, even in mobile browsers (and far
better than up-scaling, since you’re taking information out of the im‐
age, not trying to put more information in).

The problem is that these “Retinafied” images are not only twice as
big as their regular-density siblings, they’re using up to four times as
many pixels.

Plug-Ins and Widgets
Every little thing you include on your web page takes up a request-
response cycle, has to be delivered to your page, uses up additional
memory, has to be rendered by the browser, and may even require
additional compute cycles to process if it includes code.

The classic example, of course, is the Flash animation. Remember the
old days where not only would the site interrupt your browsing to

12 | The Solution Starts with Understanding the Problem

show an animated introduction, but you’d also end up waiting while
the progress bar made slow transfer and long load times painfully
obvious?

Today, over-the-top, performance-killing Flash, ActiveX, and Silver‐
light presentations are mostly a thing of the past. Occasionally you’ll
encounter a site that uses a plug-in—most often Flash—but the lack
of plug-in support in mobile browsers is quickly making them irrele‐
vant except for very specific use cases such as gaming. Hopefully your
site doesn’t require visitors to install a plug-in before they can do any‐
thing interesting (good luck making that an enjoyable experience for
the average user).

Ads and Video Have a Cost
Ads and automatically playing video seem to have taken up the crown
of annoyance and spoiled performance, particularly when imple‐
mented poorly. Ads are typically images or Flash, often fetched dy‐
namically from a remote server by a script.

Let’s count the ways that ads and video can be slow: code has to load
and run, kicking off a request to a remote server; the server does some
work and sends back some data. If you’re lucky, you get a few kilobytes.
If you’re not, it’s hundreds of kilobytes, which gets interpreted by a
plug-in running separately in the browser.

If you’re really unlucky, a stream of video comes flying over a slow
wireless connection, loads up a separate playback plug-in, and starts
immediately playing at full volume while you’re in a crowded public
setting.

Slowed Down By Code Behind the Scenes
It gets worse: if the code behind these ads runs before the page is ren‐
dered completely, but hangs up due to a slow response from the ad
server, the entire page will remain unresponsive. This continues until
the ad eventually loads, the process times out, or the user closes the
browser tab and moves on (which can happen in as little as 3 seconds).

Tim Kadlec—a web developer, consultant and author of books on web
design practices—started a recent blog post with the question “How
fast is fast enough?” and offered some interesting data points from a

The Solution Starts with Understanding the Problem | 13

http://bit.ly/kadlec-fe

1968 study on response times: 100ms feels instantaneous, while 1 sec‐
ond feels uninterrupted. After 10 seconds you’ve lost the user entirely.

How does your site fare against those metrics?

Weighing the Useful Against the Wasteful
It’s easy to turn up our noses at poorly performing plug-ins and ad‐
vertising networks. Flash is so ten years ago, right? And ads are just
something we put up with so that everything can be free.

But the reality is not so simple; plug-ins still power some significant,
well-liked businesses that stream video and music. Online advertising
is a $100B business. Great web experiences and growing businesses
depend on implementing these features the right way.

There are other, less obvious pieces to this puzzle as well. Social media
widgets, for example, can clutter and weigh down a page if used in‐
discriminately. However, as I mentioned previously, social referrals
can be a powerful tool for customer engagement.

Software as a Service (SaaS) plug-ins are another example. Some of
these, like Disqus, can be incredibly valuable services for community
building and support without having to invest in creating and main‐
taining your own backend infrastructure. However, if integrated poor‐
ly into your site, they can slow performance down and even make your
page unusable if the service becomes unavailable. How ironic if the
feature you choose to attract community actually turns it away.

14 | The Solution Starts with Understanding the Problem

Cut and Paste Development

When even simple, helpful components of your website start to be‐
come performance bottlenecks, you have to ask whether development
techniques themselves are the culprit. The Web has come a long way
in 20 years, and new tools and frameworks make the process of build‐
ing ever more sophisticated websites easier and easier.

From the basic components up to the code and database, building a
website is practically a point-and-click affair these days. There are tools
like Yeoman to build out the scaffolding, an ever-expanding universe
of MVC frameworks, jQuery and similar code libraries to simplify and
expand JavaScript, and more.

The Easy Route Makes Solving Problems
Difficult
Ultimately, the problem boils down to web development techniques
that err on the side of easy instead of correct and optimized for basic
performance.

Frequently, we choose the solution that gets work done quickly and
“efficiently,” and runs well enough on our test environment. It’s a reality
that developers need to get the work done now, not spend a week
researching the best solution. Premature optimization is the root of
all evil, right?

Less experienced developers fall into this trap as well, choosing cut-
and-paste or easily plugged-in solutions over learning how their pro‐
gramming environment really works. If you do a quick search online
for a coding solution, you’re not likely to find something up to date

15

on the first page of search results. There are a lot more out of date
coding examples with established Google cred you’ll have to sort
through before finding the most current ones. Discerning the good
from the bad can be difficult if you lack experience, time, and patience.

Shiny New Things Clutter the Solution
For experienced developers, it can be equally easy to fall prey to the
temptation of shiny new things over tried and true (and unexciting)
solutions. When you’ve been building websites for a while, the simple
solution can start to seem boring. New libraries and frameworks are
coming out all the time. Sometimes new tools make drudge work eas‐
ier; other times they enable new features. Frequently learning some‐
thing new and different spices up an otherwise dull assignment.

Some of my friends are hot on Polymer to create polyfills and custom
elements and to manipulate the mysterious Shadow DOM. It’s neat
stuff, but very cutting edge, and browser support is definitely not
guaranteed.

Or how about KerningJS, a JavaScript library just for tweaking font
kerning in your CSS?

For many years, jQuery was derided as a crutch for the lazy or un‐
trained. That is a largely unjustified accusation—like any tool, it can
be abused, but jQuery simplifies what can be time consuming to code
with relatively little additional performance cost.

I can’t make the claim that these tools are bad ideas. Some of them are
ingenious, and there’s a correct time and place for putting every one
of them to use. However, your site may not be that place. If you have
clear goals for your web application—and performance is one of them
—that should help you choose which tools and techniques will be most
effective and which are distractions.

I’m going to argue that a good first step is to put away the shiny and
the new, and instead focus on the tried and the true. Keep it simple.

With that thought, let’s take a look at some straightforward answers to
the development side of this thorny performance problem.

16 | Cut and Paste Development

http://www.polymer-project.org
http://www.kerningjs.com

Simplify, Then Add Lightness

We’ll get to some more technical solutions later, but it’s worth starting
out with some basics. Colin Chapman, the legend behind Lotus, the
sports car manufacturer and racing team, summed up his engineering
philosophy as “Simplify, then add lightness.”

It’s just physics. All else being equal, a lighter car accelerates more
quickly, goes around corners faster, and stops more efficiently. A sim‐
pler car is easier and cheaper to build, more robust, and faster to fix
when it does break.

Or, to simplify and lighten my own example, a scout leader would tell
us when preparing for a backpacking trek: “If you watch the ounces,
the ounces watch the pounds.”

If you’re starting a new project, begin with a simple, balanced roadmap
for development. Consider what’s most valuable about your web app
and focus on the solution best suited for that aspect of the project.
Avoid the kitchen sink approach! Choose a solution and a set of tools
and implement them well. That may mean spending additional time
evaluating the technical implementation details of your approach and
truly understanding and accepting the tradeoffs.

At each step along the way, consider the really basic aspects of your
site implementation. Do you need all that JavaScript? Are you pack‐
aging and loading your CSS and code dependencies efficiently? Can
you make the images smaller or optimize them? Which social widgets
get used most often? Can you leave others off? Does anyone actually
print your page anymore? Do you need special CSS and JavaScript to
create a view just for that audience?

17

Optimizing Your Optimization
Performance optimization is a technical task, but it may help focus
your efforts by putting it—at least initially—in a business context.
What are the most popular, most requested pages on your site? These
pages are probably the first you should be looking at closely and po‐
tentially optimizing.

Consider also the pages you think are most important to your business,
whether that’s the center of ecommerce transactions, interaction with
your customers or audience, or the showcase for your expertise. If
there’s a delay in rendering or interaction here, you absolutely know
you’re losing visitors… and probably revenue.

If you can put a dollar amount on traffic or interactions (whether that
entails reading your free advice, downloading your software, or mak‐
ing a purchase) on a page, you can start to calculate what delays and
poor performance cost. Then, balance that against the long term value
of investing in development time to slim down your site and improve
performance. Remember that you can correlate delays in site loading
and interactivity with increases in rates of user abandonment. Put real
numbers on those delays to figure out what they may cost. For every
day you wait to speed up your page, you can figure the potential lost
revenue.

Looking for Performance In All the Right
Places
It doesn’t take a huge effort to start tracking down performance bot‐
tlenecks. The two most important, which I’ve touched on already, are
rendering time (when is the page fully displayed in the browser?) and
time to interaction (when can the user actually do things on the page?).
We’ve all experienced these issues before: how many times have you
seen elements bounce around a page as new ads and widgets load up.
You can’t read that page, much less do anything with it.

Twitter famously called this optimization “time to first tweet” when
they did a round of reconstructing the site experience back in 2012.
The Twitter engineering team blogged about the changes at the time,
as did team member Alex Maccaw. I’ll get to some of the interesting
tips they shared later. Relevant to the current discussion about finding
bottlenecks, however, was the team’s use of the W3C Navigation Tim‐

18 | Simplify, Then Add Lightness

http://bit.ly/w3c-navtime

ing API. This is a W3C specification that lets you create your own
scripts to measure latency within your site.

There are a variety of tools available that let you benchmark real-world
page speed and interactivity. A few that come well-recommended by
professionals in the business include Google PageSpeed Tools and
WebPageTest.

A Real-World Example: SpeedCurve
SpeedCurve is an interesting site that breaks down many elements of
your page’s loading and rendering behavior in ways that highlight
where your code is inefficient. (It’s basically WebPageTest with a better
UI and features for regular testing added.)

There are rendering timelines that show step by step, in visual snap‐
shots you can’t ignore, how the page renders over time—often several
seconds (see Figure 6-1 for an illustration of this). You can see the
number of individual requests made to servers for content, and you
can see how response time varies by client platform, including mobile
devices.

Figure 6-1. SpeedCurve and other tools display rendering status in a
timeline

Simplify, Then Add Lightness | 19

http://bit.ly/w3c-navtime
http://www.webpagetest.org

SpeedCurve is a commercial service, and it may be worth the price for
convenience and a nice set of features in a single package. If you prefer
to do it yourself, however, some of this can be accomplished with tools
built right into current browsers. Getting to know the developer tools
is a great first step for quick analysis of site performance.

DIY Performance Testing
Want to do your own back-of-the-envelope testing? I’ll lay out how to
do this using Chrome:

• Go to the site you want to test
• Open the developer tools using Cmd-Option-I or Tools → De‐

veloper Tools
• Click on the Network tab
• Reload the site using Cmd-Shift-R on a Mac or Ctrl-F5 in Win‐

dows

Holding down Shift on the Mac or Ctrl in Windows makes the browser
bypass the cache and request every resource from its specified URL.
The Network tab lists every resource loaded, with information about
the request. The status bar shows a summary of requests, data trans‐
ferred, and time elapsed (see Figure 6-2).

Hopefully I don’t have to mention that the data is only relevant if you’re
measuring a deployed site. Measuring performance when loading the
site from a dev server or localhost won’t tell you nearly as much.

Another approach is user timing and real user monitoring. It’s hard to
be objective when clicking around your own site, so get someone else
to do it. Get out a stopwatch and observe as the person clicks around.
Note how long rendering takes and when the user can start tasks (and
which ones she chooses). Note when she seems frustrated and when
she clicks away.

These are really simple tests to run, and they don’t even require adding
time and tooling to your development environment. Firefox, Internet
Explorer, and Safari all have similar tools, so you can do this testing
in your favorite browser.

20 | Simplify, Then Add Lightness

Figure 6-2. Using Chrome’s developer tools to measure website perfor‐
mance

Simplify, Then Add Lightness | 21

Site Optimization From
the Top Down

Once you’ve determined that you have a performance problem and
have narrowed down where you need to focus optimization efforts, it
may be tempting to simply throw additional resources at the compu‐
tation end of the solution. You might be tempted to tackle performance
issues with more servers, load balancing, caching, and so on.

In some cases, this is the solution. But before you head too far down
this route, consider whether you’re just temporarily putting off devel‐
opment work and instead adding additional cost and complexity to
keeping your website running. This is technical debt of another kind.
You’re actually adding ongoing system administration work instead
of fixing the root of the problem.

Digging into the code and related page resources—HTML, CSS, Java‐
Script and images—isn’t actually that much work. You’re not commit‐
ting to a full site redesign. Instead, there are many simple checks you
should be doing anyway to optimize all the elements of your site. De‐
veloping a better understanding of how the browser pulls in and ren‐
ders all of your page resources can help, too.

Simplify Your HTML
Your first step is optimizing the HTML itself. It’s a good idea to go
through your basic HTML markup and make sure you’re following
modern conventions. Start by making sure your code is clean, reada‐
ble, and not using any unnecessary tags.

23

Dave Raggett’s HTML TIDY was built to automatically check and clean
up HTML, and updated, web-based HTML cleaners use it (and a few
similar tools). Check out Cleanup Html and Dirty Markup, two ex‐
amples of the variety of tools available to check CSS and JavaScript as
well.

I also recommend getting on board with semantic markup: separating
content from its styling and stripping the HTML down to only the
required elements will help you get organized. In 2008, Chris Coyier
wrote an excellent primer called “12 Principles For Keeping Your Code
Clean.” Most of the principles still apply.

HTML5 brings new features that enable you to slim down semantic
markup even further. There’s a new, simpler doctype, and new tags like
<header>, <nav>, <section>, and <footer> that map directly to ele‐
ments of your page. This means more straightforward element tagging
and potentially fewer class and id declarations. Josh Lewis has a
helpful article called “HTML5 Semantic Page Structure” that updates
some of the information from Chris Coyier’s piece. I highly recom‐
mend reading these introductions to the topic if nothing else, but this
is modern web development information you should know.

Put Your CSS and JavaScript on a Diet
Externally referenced CSS and script files cause additional resource
requests and roundtrips, but can be cached by the browser. Even small
files incur round trip costs that cause latency, whether or not band‐
width is a performance factor. DNS lookup also causes latency, so
minimize the number of different DNS lookups needed to load critical
resources. Further visits still need to request the data, though it can be
fetched from the cache, which is faster.

But remember: you only get one chance at a first impression. Make
sure that initial experience is a good one.

Minification makes externally referenced files smaller and more effi‐
cient. Combining your CSS and JavaScript into as few files as possible
also reduces the number of requests. Remember, each file you need to
load requires its own request and response (and potentially a DNS
lookup as well). Don’t use the CSS @import directive as a shortcut to
combine stylesheets—it doesn’t work like compiling code; the browser
still needs to request both files.

24 | Site Optimization From the Top Down

http://bit.ly/html-tidy
http://www.cleanuphtml.com
http://www.dirtymarkup.com
http://bit.ly/12codeclean
http://bit.ly/12codeclean
http://bit.ly/html5-structure

A Little Order Keeps Requests from Blocking
The order in which you reference CSS and script files is important.
The general rule is to reference styles in the header and JavaScript at
the end of the file. This is great advice, but why? Because browsers wait
to render content after a <script> tag until the script finishes running.

If the script has to be requested and downloaded first, add that time
to the equation. This delay is intentional to allow the script to make
any potential changes to elements in the page or their layouts.

While the script is downloading and executing, any resources beyond
the associated <script> tag in the page are effectively blocked from
action. That includes downloading images, CSS files, or any other
scripts. Note that inline scripts block, too, so be careful where you put
them.

A script effectively blocks, if only temporarily, any further action when
it is encountered. Now you see why common practice has been to load
CSS in the header and JavaScript later, so the majority of the page
resources can download and render before the script blocks.

Loading JavaScript Asynchronously
Another option to consider—whenever possible—is loading Java‐
Script asynchronously. This instructs the browser to download a ref‐
erenced script file, but wait on executing it until later when the UI
thread is not busy rendering the page or handling user input. This is
a common technique for loading analytics code, for example, and can
also be used effectively for non-layout scripts, loading third-party
scripts that could be slow or offline, and even handling below-the-fold
DOM manipulation.

One old method you can employ is the <script> tag’s defer attribute:

<script defer src="http://yourJavaScript.js"></script>

Most browsers you encounter today support the defer attribute. Some
older versions of Opera and Safari did not, unfortunately, and Internet
Explorer prior to version 10 offered only partial support. The catch
for all supporting browsers is that your script can’t do any DOM ma‐
nipulation or use the document.write method when you employ the
defer attribute.

Site Optimization From the Top Down | 25

If you can target them, more current browsers support simply using
the HTML5 async attribute when referencing scripts.

<script async src="http://yourJavaScript.js"></script>

This has all of the advantages of the defer attribute with none of the
restrictions.

If you need to support older or non-conforming browsers and de
fer won’t do the trick, the traditional script DOM element technique
may work. It requires more code, but also gives you extra flexibility:

<script>
 var resource = document.createElement('script');
 resource.src = "//third-party.com/resource.js";
 var script = document.getElementsByTagName('script')[0];
 script.parentNode.insertBefore(resource, script);
</script>

I borrowed this code from Chris Coyier’s excellent “Thinking Async”
post at CSS-Tricks. I would definitely recommend using this article as
a resource for understanding async JavaScript. Coyier provides further
explanation of how the script DOM element works along with handy
tricks related to asynchronous script execution, calling ads, incorpo‐
rating jQuery, social media scripts, and more.

More Tips for Optimizing CSS and Script
Resources
This is also a good time to refer back to Alex Maccaw’s blog post about
re-engineering the Twitter site experience, which I mentioned earlier.
Maccaw offers some excellent advice related to simple optimization of
your CSS and script resources—as well as caching them effectively for
return visits—that I highly encourage you to read.

None of the recommendations I’ve covered here are particularly
groundbreaking and should be well known to experienced web de‐
velopers. However, they’re worth revisiting. Simple optimizations are
often the first and easiest to forget in the heat of getting things shipped.

26 | Site Optimization From the Top Down

http://bit.ly/think-async
http://bit.ly/think-async
http://bit.ly/time1st

Is an Image Worth 1,000 Bytes?

Early on, I started slamming large image files as a problem, so I should
probably spare a few words here on a solution for handling them. I
discussed size and resolution in the context of high-density Retina
displays. You have options regarding which images can best be resized
to 1.5× or 2×. Fortunately, you also have a variety of supported image
formats to choose from and excellent tools for optimizing image qual‐
ity (in terms of bytes) regardless of image size (in terms of pixels).

A very simple recommendation is to avoid using images as construc‐
tion elements of your page. In other words, don’t use a 50×100 pixel
image to create your header if it’s mostly white space. Instead, crop the
image to the essentials and use CSS to locate elements on your page.
It’s not only the right way to do the Web, it’s also far more efficient.

Efficient Image Formats Save Space
Choose the image format and color palette that is appropriate; JPG
files can be configured to optimize size while maintaining excellent
image quality. For the flat design popular today, you can often employ
8-bit GIF or PNG files with optimized color palettes to get tiny files.

Smush.it is a free image analyzer and optimization tool that’s worth a
look. Just upload your images (or provide URLs if they’re already hos‐
ted on your site) and the service provides a zipped download of the
optimized files, telling you exactly how many bytes it saved.

Both JPG and PNG offer “progressive” or “interlaced” modes that en‐
able you to display a low-resolution version of the image immediately
while the full resolution image downloads. The displayed image pro‐
gressively increases in quality as the bits come in over the wire, hence

27

http://www.smushit.com

the name. Generally speaking, this technique is frowned upon. How‐
ever, there are always tradeoffs worth considering for specific user
experiences you may find desirable.

Used carefully, progressive images can help. Remember, perceived
speed is important to user experience. If the low-resolution image
displays immediately, even though the full image isn’t there yet, your
site appears to be fast. If your site or business relies on excellent image
quality—professional photography is the obvious example—you can
take advantage of this feature to get the best of both worlds. Just make
sure to use it wisely on only the most important images!

An Old Trick That Still Works: CSS Sprites
CSS sprites involves combining several images into a single file then
using some clever CSS to display only specific slices of that image in
specific locations on your page. This technique is particularly handy
for small, regularly shaped image elements like icons, where you might
fit dozens, organized into a grid, in the image. See an example from
Brandon Setter’s blog in Figure 8-1.

Figure 8-1. An example of CSS Sprites within a single image

The downside is some rather fidgety image and CSS creation, though
this technology is old enough that you’ll find many helpful utilities to
smooth the process. The upside is that you get one single request,
response, and download instead of dozens. For a handy tutorial, see
Smashing Magazine’s article “CSS Sprites Revisited”, which contains
references to even more ancient discussions of this evergreen topic.

28 | Is an Image Worth 1,000 Bytes?

http://bit.ly/60sprites
http://bit.ly/sprites-revisited

Mobile Doesn’t Mean Speedy

The Web experience on smartphones and tablets isn’t going to make
your life any easier. Web browsing on mobile devices accounted for
over 20 percent of traffic at the end of 2013 and as I pointed out earlier,
mobile ecommerce is growing at a rate of 14 to 17 percent annually.

If you think about it, mobile devices with great web experiences are
the ultimate shopping weapon: as soon as shoppers think about need‐
ing an item, they can whip out a phone, browse to the seller’s site, do
a little research and make a purchase… assuming the site performs
well enough to close the deal.

The Tammy Everts blog post I referred to at the beginning contains
some important research points about mobile performance. Over 80
percent of mobile shoppers expect site performance equal to or better
than desktop browsing, and shopping cart abandonment rates rise to
97 percent, versus 70-75 percent on the desktop.

Mobile is Always a Slower Experience
A significant problem is performance expectation: consumers think
mobile web browsing will be faster. Technically speaking, that’s almost
impossible to achieve today.

Under optimal conditions, mobile devices using WiFi or LTE net‐
works can achieve latency times almost comparable to desktop broad‐
band, at least for general browsing. However, not all phones and net‐
works are created equal. FierceWireless and OpenSignal tested mobile
network latency across carriers and networks and found that, while
some LTE networks provided low mean latency, other offerings could
be considerably slower.

29

http://bit.ly/stat-counter
http://bit.ly/fierce-wireless
http://bit.ly/fierce-wireless

Be Careful How You Optimize for Mobile
At one time it was considered smart to create a separate, slimmed down
mobile site (often called an “m.dot” site) to accommodate mobile
users. Aside from the hassle of creating and maintaining two semi-
parallel design and development tracks, there’s an inherent perfor‐
mance killer baked into the concept: resolving a connection to the
main site, detecting the mobile browser, redirecting to the mobile
URL, and starting to transfer those files adds several rounds of request-
response-download latency to an already slow connection.

Responsive web design that seamlessly falls back to the best experience
for a given screen size and connection is a far better solution. Add to
that some of the basic site optimizations I’ve already discussed and
you’re most of the way to having a site that’s inherently built to perform
well whether on a desktop browser or a handheld device moving at
warp commute speed.

Another aspect of optimization for your site that can grow out of con‐
sideration of mobile users is—going back to business-optimizing goal
setting again—thinking at the design level about what’s most impor‐
tant to your site. Fast and simple seems to be the best experience in
mobile.

For a deeper look at this subject, take a look at the Chapter 8 preview
of Ilya Grigorik’s book for O’Reilly, High Performance Browser Net‐
working.

30 | Mobile Doesn’t Mean Speedy

http://bit.ly/hpbn-ch8
http://bit.ly/hpbn-ch8

Next Steps

Now you’ve seen that there are clear industry trends toward faster,
better performing websites contributing to better, faster-growing busi‐
nesses. And yet websites among the most prominent online retailers
continue to grow bigger and slower every year.

I’ve also shown that you don’t have to follow this trend. In fact, steering
your site in the opposite direction—toward a smaller, faster design and
development profile—can pay dividends for your business. Looking
back through the ideas I’ve presented, you can lay out a straightfor‐
ward checklist to follow before diving into more complicated, ad‐
vanced optimizations:

1. Start by measuring the size, request latency, and load time of your
current site on various devices. You can do this right in the
browser.

2. Use online tools to measure more advanced site performance
metrics and compare them against industry averages.

3. Know how long your page takes to finish rendering and what the
time is to the first interaction. This is your first-impression metric.

4. Evaluate your business goals and try to correlate site performance
with traffic, conversions, revenues, or whatever metric is relevant
to your business.

5. Focus optimization toward the most revenue-related aspects of
your site.

6. Count all of the components that have to be requested to render
your page. Can you reduce this number?

7. Slim down your HTML. Combine and minify your CSS files.

31

8. Take a close look at where you reference scripts and when they
execute. Are scripts blocking page rendering or interaction?

9. Make sure you’re using images wisely and optimizing them for
size and quality. A little bit of code can make sure you’re not send‐
ing too many image bytes where they’re not needed.

10. Don’t throw out social features just because they add to your re‐
quests, scripts, and page size if they benefit the business; just be
sure to use them tactically instead of spreading them all over the
place.

11. Starting with a focus on the mobile experience—most likely your
fastest growing customer experience—may help you target per‐
formance optimizations that benefit all visitors to your site, even
those using the desktop.

To summarize, keep it simple and keep the focus on a great experience
for your visitors. A flashy site might seem impressive, but the numbers
don’t lie: customers want a quick, responsive experience. The sooner
you deliver it, the happier they’ll be.

32 | Next Steps

About the Author
Terrence Dorsey is a writer, editor, and content strategist specializing
in technology and software development. He is currently a Senior
Technical Writer at ESPN, working with the Data & Platforms Archi‐
tecture team on next-generation sports data APIs. He also writes a
monthly column for Visual Studio Magazine. Previously, Terrence was
the Director of Content Development at The Code Project and a senior
editor and columnist for MSDN Magazine and TechNet Magazine.
Read his blog at terrencedorsey.com or tweet him @tpdorsey.

	Cover
	Copyright
	Table of Contents
	Introduction
	Make the Web Faster
	The Simple Path to Performance

	Big Web Pages are a Bigger Problem Than You Think
	Web Performance Means Business
	Charting Web Performance Against Business Success
	Leave Room for Social Experiences

	Bigger Pages Clog Up the Pipes
	Net Neutrality Affects You, Too

	What Makes Web Pages Fat?
	Weighed Down By User “Experience”?
	Are Development Tools Part of the Problem?

	The Solution Starts with Understanding the Problem
	Hero Images and Scaling for Retina
	Sizing Images Effectively
	Plug-Ins and Widgets
	Ads and Video Have a Cost
	Slowed Down By Code Behind the Scenes
	Weighing the Useful Against the Wasteful

	Cut and Paste Development
	The Easy Route Makes Solving Problems Difficult
	Shiny New Things Clutter the Solution

	Simplify, Then Add Lightness
	Optimizing Your Optimization
	Looking for Performance In All the Right Places
	A Real-World Example: SpeedCurve
	DIY Performance Testing

	Site Optimization From the Top Down
	Simplify Your HTML
	Put Your CSS and JavaScript on a Diet
	A Little Order Keeps Requests from Blocking
	Loading JavaScript Asynchronously
	More Tips for Optimizing CSS and Script Resources

	Is an Image Worth 1,000 Bytes?
	Efficient Image Formats Save Space
	An Old Trick That Still Works: CSS Sprites

	Mobile Doesn’t Mean Speedy
	Mobile is Always a Slower Experience
	Be Careful How You Optimize for Mobile

	Next Steps
	About the Author

